Solenoid Valve

DD-2,3

Pilot type	Direct type	Piston	Diaphragm
Normally closed	Normally opened	AC coil	DC coil
Stainless steel	110 V / 220 V	Explosion-proof	JWWA
Leak 0			

RED M

ULTRA-HIGH PERFORMANCE SOLENOID

Features

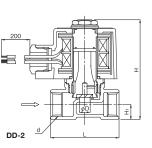
- Outstanding corrosion resistance achieved by adopting stainless steel for major parts and body.
- 2. Significantly improved corrosion resistance with stainless steel made body and trim parts.
- 3. Various installation postures: Vertical or horizontal including intermediates.
- 4. Equipped with coil of AC 110/220V selective and common for 50 Hz/60 Hz.

Specifications

	Model	DD-2	DD-2-8	DD-3	DD-3-8	
Ar	Application	Steam, Air, Cold and hot water, N2 gas,		Air, Cold and hot water, N2 gas,		
~	oplication	CO2 gas (dry), Ar gas, Oil		CO2 gas (dry), Ar gas, Oil		
Flui	d viscosity	20 cSt		or less		
Work	ing pressure	0-0.15 MPa	0-0.8 MPa	0-0.15 MPa	0-0.8 MPa	
Or	ifice (mm)	φ9.5	φ4.0	φ9.5	φ4.0	
(Cv value	1.7	0.55	1.7	0.55	
Allowable	valve seat leakage	50 mL/min under standard conditions		No (by confirming pressure gauge visually)		
MAX	temperature	175°C		100°C		
C	peration	Normally closed				
	Body	Stainless steel (SCS14A)				
Material	Plunger	Stainless steel				
	Valve disc	PTFE		FKM		
Co	onnection	JIS Rc screwed				

Specification of Coil

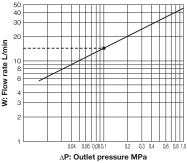
Rated voltage	AC 100 / 200 V selective type	AC 110 / 220 V selective type	
Hated voltage	50 / 60 Hz common		
Allowable fluctuation	Rated voltage ±10%		
Rated current	0.42 / 0.21 A	0.38 / 0.19 A	
Starting current	1.10 / 0.55 A	1.00 / 0.50 A	
Insulation class	Insulation class H		
Protective structure	Dust proof, Splash proof		
Ingress protection code	IP64 (JIS C0920)		
Insulation resistance	50 MΩ and more/500V megger		
Withstand voltage test	1500 V/min		


· Available with the terminal box.

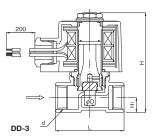
11

Solenoid Valve/Motor Valve

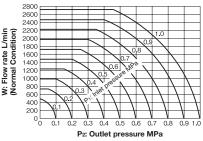
Dimensions (mm) and Weights (kg)


Nominal size	d	L	Н	H1	Weight
10A	Rc 3/8	50	85.5	12	0.66
15A	Rc 1/2	60	87.5	13	0.69
20A	Rc 3/4	65	91	16.5	0.74

■Nominal Size Selection Chart


· For steam (Cv = 1) 140 130 120 110 W: Flow rate Kg/h 100 90 80 70 0.6 60 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 P2: Outlet pressure MPa

· For water (Cv = 1)



* Please refer to P.11-9 for Cv value and calculation formula.

Model	ϕ D(mm)	
DD-2	9.5	
DD-3		
DD-2-8	4.0	
DD-3-8	4.0	

For air (Cv = 1)

· How to determine the flow rate (Steam, Air)

First find the flow rate (W for steam, Q for air), the intersection of inlet pressure P₁ and outlet pressure P₂. Secondly, multiply the flow rate Q or W by Cv value for each model. [Example] · Model: DD-2-8 (Cv value: 0.55)

- · Fluid: Steam
- · Inlet Pressure (P1): 0.8 MPa
- · Outlet Pressure (P2): 0.5 MPa

Flow rate W is 92 kg/h, which is the intersection of P₁ = 0.8 MPa and P₂ = 0.5 MPa, as shown by the dashed line. Next, multiply W = 92 kg/h by the Cv value of 0.55. Therefore: 92 kg/h x 0.55 = 50.6 kg/h

· How to determine the flow rate (Water)

First calculate pressure loss ΔP and then find the flow rate V in the above chart. Secondly, multiply the flow rate V by Cv value for each model.

- [Example] · Model: DD-3 (Cv value: 1.7)
 - Inlet Pressure (P1): 0.15 MPa
 Outlet Pressure (P2): 0.05 MPa

Pressure loss is calculated as $\Delta P = P_1 - P_2 = 0.1$ MPa. Then, find the flow rate V = 14 L/min as shown by the dashed lines in the above chart. Next, multiply V = 14 L/min by the Cv value of 1.7. Therefore: 14 L/min x 1.7 = 23.8 L/min