
Model GP-1000 Series

PRESSURE REDUCING VALVE

Installation & Operation Manual

Please read this bulletin thoroughly before using the pressure reducing valve, so that you may do so correctly and safely. Please carefully store this bulletin in a handy place.

-The following safety symbols are used in this manual. -

▲ Caution

This symbol indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

This symbol indicates a hazardous situation that, if not avoided, may result in minor or moderate injury. ("Caution" may also be used to indicate other unsafe practices or risks of property damage.)

Contents

1. Features ······1	
2. Specifications1	
3. Dimensions and Weights2	
4. Operation	
5. Nominal Size Selection Method	
5.1 Specifications selection chart4	
5.2 Safety valve setting pressure ······4	
5.3 Characteristics chart ······4	
5.4 Nominal size selection chart5	
5.5 Nominal size selection calculation formula6	
6. Installation	
6.1 Example of piping ······6	
6.2 Precautions during installation7	
7. Operating Procedure	
7.1 Precautions during operation8	
7.2 Adjustment procedures ······8	
8. Maintenance Procedure	
8.1 Troubleshooting ······9	
8.2 Precautions during maintenance and inspection 10	
8.3 Disassembly 10	
8.4 Precautions during reassembly 11	
8.5 Exploded drawing 12	2
After Sale Service	

YDSHITAK

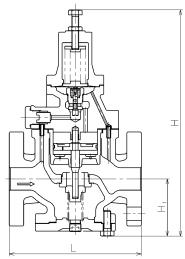
1. Features

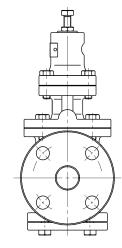
GP-1000 Series pressure reducing valves for steam are pilot-operated valves which can be used with confidence for small to large flow rate, in a host of applications ranging from building utilities systems, air-conditioning systems, and factory systems, etc.

2. Specifications

	Model	GP-1000	GP-1000 GP-1010 GP-1000SS		-1000 GP-1010 GP-1000SS GP-1000H GP-10		GP-1002	GP-1012		
	Connection	Connection Flanged (JIS 10K FF) JIS Rc Screw Flanged (JIS 10K FF		Flanged (JIS 10K FF)	Flanged (JIS 16K FF)	Flanged (JIS 10K FF)	JIS Rc Screw			
	Nominal size	15~100A	$15\sim$ 50A	15~100A	15~100A	15~100A	$15\sim$ 50A			
	Application			Ste	am					
	Inlet pressure		0.1~1.0 MPa		0.1~1.6 MPa	0.1~0	.5 MPa			
		(0.05∼0.9 MPa	1	0.05~0.9 MPa 0.9~1.4 MPa	0.03~0	15 MPa			
Re	educed pressure		0.03 0.3 Mi a			0.00 0.10 Mi a				
			90% or less of inlet pressure (gauge pressure)							
M	lin. differential pressure	0.05 MPa								
	Max. pressure reducing ratio	20:1								
Μ	ax. temperature	220°C								
Va	lve seat leakage	0.01% or less of rated flow								
	Body Ductile cast iron Stainless stee		Stainless steel	el Ductile cast iron						
ial	Valve									
Material	Valve seat	Stainless steel								
M	Piston/Cylinder Brass of		Brass or Bronze Stair		less steel	Brass or	Bronze			
	Gasket	Non asbestos								
Bo	dy hydraulic test		2.0 MPa		3.2 MPa	1.0	MPa			

• Stainless steel main components (piston & cylinder) are also available.(GP-1

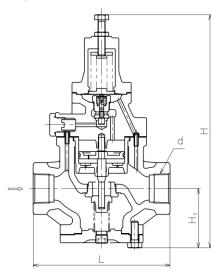

• All stainless steel types are also available for GP-1000.

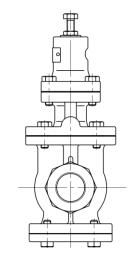

• Adjusting handle types are also available for GP-1000 and GP-1010.(GP-1001,1011)

<u>∧</u>Caution

(1) Please collate with attached nameplate and specification of ordered model.※Please consult factory in case they do not match each other.

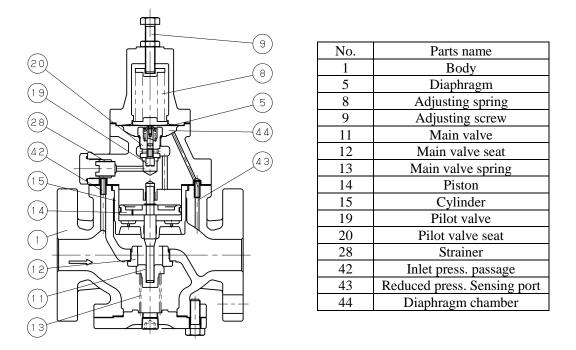
3. Dimensions and Weights • GP-1000, 1000H, 1002





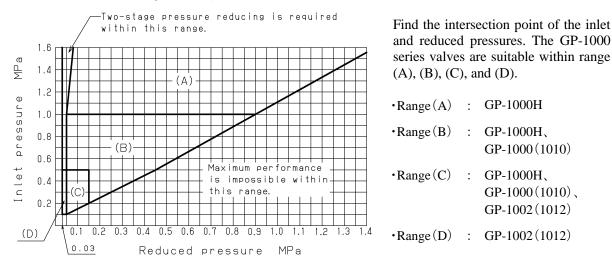
(mm) ГТ Weight (kg)

L	Н	H_1	Weight (kg)
150	285	64	8.0
155	285	64	8.5
160	300	67	10.0
190	323	82	14.0
190	323	82	14.5
220	347	93	20.0
245	357	100	30.0
290	404	122	35.0
330	450	144	52.5
	150 155 160 190 190 220 245 290	150285155285160300190323190323220347245357290404	$\begin{array}{c ccccc} L & H & H_1 \\ \hline 150 & 285 & 64 \\ \hline 155 & 285 & 64 \\ \hline 160 & 300 & 67 \\ \hline 190 & 323 & 82 \\ \hline 190 & 323 & 82 \\ \hline 220 & 347 & 93 \\ \hline 245 & 357 & 100 \\ \hline 290 & 404 & 122 \\ \hline \end{array}$


• GP-1010, 1012

				(mm)	
Size	d	L	Н	H_1	Weight (kg)
15A	Rc 1/2	150	285	64	7.0
20A	Rc 3/4	155	285	64	7.0
25A	Rc 1	160	300	67	8.5
32A	Rc 1-1/4	190	323	82	12.0
40A	Rc 1-1/2	190	323	82	12.5
50A	Rc 2	220	347	93	18.0

4. Operation

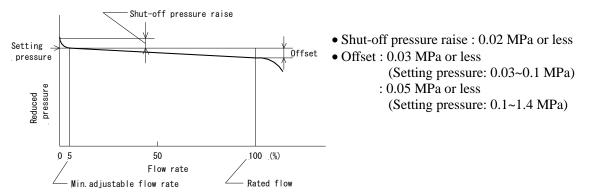


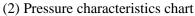
The pressure-reducing valve reduces pressure by the throttling the valve. The valve is composed of the main valve and main valve seat for throttling, and adjusting spring, diaphragm, pilot valve, and piston for pressure sensing and activation.

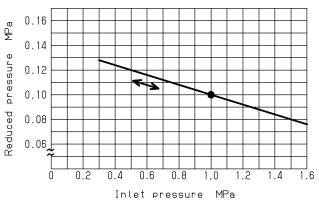
- (1) When the pressure-reducing valve is mounted correctly, releasing the compression of adjusting spring [8] allows the spring to close main valve [11] and pilot valve [19]. Slowly open the gate valve and allow the high-pressure fluid to flow in. Inlet pressure is applied to the downside of the main valve. High-pressure fluid passes through strainer [28] via inlet pressure passage [42] to also apply inlet pressure to the downside of the pilot valve.
- (2) Turing adjusting screw [9] clockwise compresses the spring, which flexes diaphragm [5] to open the pilot valve.
- (3) Inlet pressure via inlet pressure passage and pilot valve enters the upside of the piston. The pressure overrides the pressure on the downside of the main valve and the load of main valve spring[13], to open the main valve. The fluid then begins to flow from the inlet side.
- (4) Reduced pressure is led to diaphragm chamber [44] via reduced pressure sensing port [43]. The diaphragm receives the reduced pressure to be balanced with the adjusting spring load, and control the pilot valve travel.
- (5) The change of pilot valve travel changes the flow rate of fluid to the upside of the piston, and controls the main valve travel to obtain appropriate reduced pressure.

5. Nominal Size Selection Method

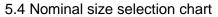
5.1 Pressure reducing valve specification selection chart

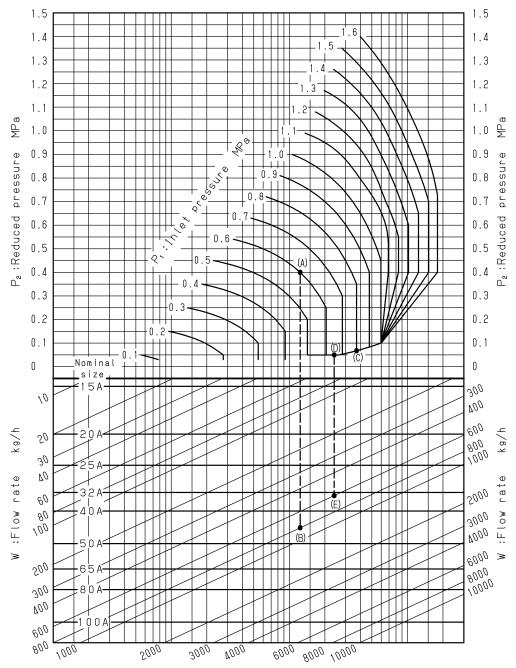



5.2 Safety valve setting pressure


Reduced pressures (MPa)	Safety valve setting pressure (MPa)
0.03~0.1	Reduced pressures + more than 0.05
0.1~0.4	Reduced pressures + more than 0.08
0.4~0.6	Reduced pressures + more than 0.1
0.6~0.8	Reduced pressures + more than 0.12
0.8~1.4	Reduced pressures +15%

5.3 Characteristics chart


(1) Flow rate characteristics chart



Reduced pressure is set to 0.1 MPa when inlet pressure is 1.0 MPa. The chart indicates a variation in reduced pressure when the inlet pressure is changed from 1.6 to 0.3 MPa.

[Ex.1]

For example, take a pressure reducing valve whose inlet pressure (P_1) is 0.6 MPa, reduced pressure (P_2) is 0.4 MPa, flow rate 800 kg/h. First, find the point of intersection (A) of inlet pressure 0.6 MPa and reduced pressure 0.4 MPa. Vertically proceed from point (A) to come across the flow rate 800 kg/h, and regard this point as (B). Point (B) is between nominal sizes 40A and 50A. Select the larger nominal size 50A.

[Ex.2]

For example, take a pressure reducing valve whose inlet pressure (P_1) is 0.8 MPa, reduced pressure (P_2) is 0.05 MPa, flow rate 600 kg/h. First, find the point of intersection (C) of inlet pressure 0.8 MPa and the diagonal line. Move leftward down the diagonal line to intersection point (D) where the diagonals line intersect with the reduced pressure 0.05 MPa. Vertically proceed from point (D) to come across the flow rate 600 kg/h, and regard this point as (E). Point (E) is between nominal sizes 32A and 40A. Select the larger nominal size 40A.

5.5 Nominal size selection calculation formula

The appropriate nominal size can be calculated by obtaining the Cv value for the operating conditions in question, as shown below.

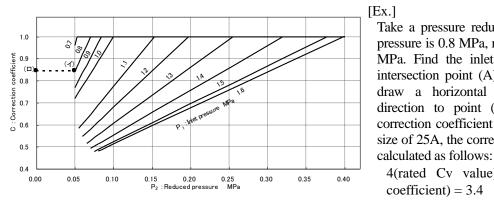
• Cv value calculation formula

$$P_2 > \frac{P_1}{2}$$

$$C_V = \frac{Wk}{138\sqrt{\Delta P(P_1 + P_2)}}$$

$$P_2 \leq \frac{P_1}{2}$$

$$Cv = \frac{Wk}{120P_1}$$

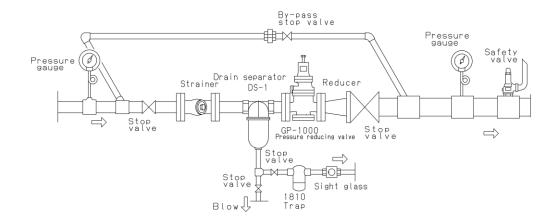

W: Max. steam flow rate [kg/h] P₁: Inlet pressure [MPa · A] P₂: Reduced pressure [MPa · A] Δ P: P₁-P₂ [MPa] k: 1+0.0013 × {super-heated steam temp.[°C]-saturated steam temp.[°C]}

• Rated Cv value table (When Cv correction coefficient is C=1)

Nomina	al size	15A	20A	25A	32A	40A	50A	65A	80A	100A
Rated C	v value	1	2.3	4	6.5	9	16	25	36	64

*Correction of rated Cv value

If the inlet pressure exceeds 0.7 MPa, and the pressure reducing is 0.4 MPa or less, find the appropriate correction coefficient C using chart below, and multiply the rated Cv value, and obtain the corrected Cv value.

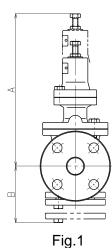


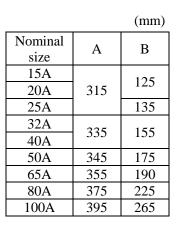
Take a pressure reducing valve whose inlet pressure is 0.8 MPa, reduced pressure is 0.05 MPa. Find the inlet and reduced pressure intersection point (A) at the left chart, then draw a horizontal line in the leftward direction to point (B) which indicates a correction coefficient of 0.85. For a nominal size of 25A, the corrected Cv value would be

4(rated Cv value) \times 0.85(correction coefficient) = 3.4

6. Installation

6.1 Example of piping


6.2 Precautions during installation


A Warning

- Because of heavy weight, hold the valve with lifting equipment while piping. Refer to
 3. Dimensions and weights" table for the valve weight.
 - *Failure to do so may result in injury due to dropping the valve.
- (2) In case installing safety valve as safety device at outlet side, joint relief pipe at outlet of safety valve and guide it to safety place where steam can relief out. ※Failure to do so may result in burns.

▲ Caution

- (1) Do not disassemble the valve unreasonably.
- *Disassembling the valve at your discretion may affect the original performance.
- (2) Remove foreign matter and scales from the lines before connecting the valve.
- %Failure to do so may prevent the valve from functioning correctly.
- (3) Install a strainer (80 mesh) at the valve inlet side.
- %Failure to do so may hamper correct pressure control, which affects the original performance.
- (4) Install a safety valve at the valve outlet sides as safety device for equipment.※Failure to do so prevents problem identification, resulting in equipment damage.
- (5) Install a pressure gauge at both the inlet and outlet sides of the valve. %Failure to do so may hamper correct pressure adjustment.
- (6) Install a steam trap to the inlet sides of the valve to prevent drainage problems.
 - *Failure to do so may result in drainage problem, affecting the original performance.
- (7) When installing quick open and close valves, such as a solenoid valve, install it at inlet side as much as possible, and secure at least 3 m from the valve. ※Failure to do so may result in malfunction or drastically shortened service life.
- (8) When pressure reducing in two stages, secure at least 3 m between the valves.
- Failure to do so may result in malfunction, affecting the original performance.
- (9) Install the valve in proper direction of the fluid flow.
- %Failure to do so may affect the original performance.
- (10) Do not apply excessive load, torque or vibration to the valve.
- *Doing so may result in malfunction or drastically shortened service life.
- (1) Install the valve perpendicularly to horizontal lines.
- (2) Provide the by-pass line. (See 6.1 Example of piping)
- (3) When the pressure-reducing ratio is large, install a reducer to keep the flow velocity in the pipe below 30 m/s or less.
- (4) Provide space on the top and bottom of the valve so that the valve can be easily disassembled and inspected. (See Fig.1)

7. Operating Procedure

7.1 Precautions during operation

\Lambda Warning

- (1) Do not touch the valve directly with bare hands.
- ※Doing so may result in burns.
- (2) Before flow the steam in pipe line, make sure steam can flow without any dangerous at the end of pipe line and pipe line is connected tightly.
 - XIn case steam blow off, it may result in burns.

A Caution

- (1)Close the stop valves before and after the pressure reducing valve, and remove all foreign matter and scales via the by-pass line before operation. And, open each stop valve slowly.
 - *Failure to do so may prevent the valve from functioning correctly. And, It may cause hunting, water hammer, etc., resulting in damage to the valve and other equipment when the stop valve is opened quickly.
- (2)Secondary pressure at by-pass line must be lower than set pressure.
 - Safety valve blows in case secondary pressure at by-pass line becomes higher than set pressure.
- (3)When adjusting pressure, slowly turn the adjusting screw
 - ※Incorrect adjustment may cause hunting, water hammer, etc., resulting in damage to the valve and other equipment.
- (4)Remove condensate completely from the line, and close the stop valves before and after the valve when not using it for long periods of times.
- %Rust generated in the valves and lines may cause malfunction.
- (5)For the model with handle, be sure to operate the handle manually and turn it while pushing down. At this time, do not turn with too much torque or do not turn excessively. %Rust generated in the valves and lines may cause malfunction.

7.2 Adjustment procedures

Follow the steps below, and slowly turn the adjusting screw to set pressure. Incorrect adjustment may cause hunting, water hammer, etc., resulting in damage to the valve and other equipment.

- (1) Close the stop valve at inlet and outlet side of the pressure reducing valve, and taking sufficient time not to blow the safety valve, blow off the fluid to remove foreign matter via the by-pass line. After blowing, close the by-pass line stop valve.
- (2) Slowly open the stop valve at the inlet side of the pressure reducing valve, and adjust the travel of the stop valve at the outlet side of the pressure reducing valve so that a little fluid flows.
- (3) Loosen the lock nut, and slowly turn the adjusting screw to achieve the desired pressure (clockwise to increase, counterclockwise to reduce) while observing the pressure gauge on the outlet side. While adjusting the pressure, push down and turn the handle slowly because the handle is locked in normal position and look at the secondary side of pressure gauge closely. (Secondary pressure rises by turning the handle in clockwise and descends in counterclockwise).
- (4) Slowly open the stop valve at the outlet of the pressure reducing valve, and readjust the desired pressure.
- (5) After adjustment, tighten the lock nut. For the model with handle, handle is pulled up and locked by releasing hold. If it is not locked, turn the handle to left and right then release it.

8. Maintenance Procedure

8.1 Troubleshooting Problem Cause Solution 1. Incorrect pressure is being used. 1. Correct the pressure. 2. Strainer [28] is clogged. 2. Disassemble and clean the strainer. 3. Disassemble and remove the foreign 3. Foreign matter exists between piston [14] and cylinder [15]. matter. When any scratches are identified, polish them away using a paper. Change the parts if scratches Pressure does not still exist after polishing. reach the desired 4. Replace the piston ring. 4. Piston ring [16] is damaged. value. 5. Nominal size is too small for the 5. Change the nominal size specifications. appro-priately. 6. Pressure is not adjusted correctly. 6. Observe the adjustment procedures and readjust pressure. 7. Strainer installed before pressure 7. Disassemble and clean it. reducing valve is clogged. 8. Pressure gauge is faulty. 8. Replace it. 1. Foreign matter exists between main 1. Disassemble and remove the foreign valve [11] and main valve seat matter. When any scratches are identified, lap the main valve and [12], or scratches exist. main valve seat. Change the parts if scratches still exist after lapping. 2. Disassemble pilot 2. Foreign matter exists between pilot the valve valve [19] and pilot valve seat [20], as-sembly, and clean or replace it. or scratches exist. Reduced pressure raises above than 3. Foreign matter exists between piston 3. Disassemble and remove the foreign the specified value. [14] and cylinder [15]. matter. When any scratches are identified, polish them away using a paper. Change the parts if scratches still exist after polishing. 4. Install a trap. 4. Trap is not provided for dead-end line. 5. By-pass valve is leaking. 5. Repair or replace it. 6. Diaphragm [5] is damaged. 6. Replace the diaphragm. 1. Nominal size is too large for the 1. Change the nominal size appro-priately. specifications. 2. Pressure reducing ratio is too large. 2. Reduce pressure in two stages. 3. Drainage problem is caused. 3. Install a trap. Abnormal noise is 4. An abrupt OPEN/CLOSE valve is 4. Allow as much as possible between heard. located too close to the pressure the valves. reducing valve. 5. Outlet pipe is too small. 5. Select a pipe size that will produce a flow velocity of 30m/s or less.

• Foreign matter and scales in a pipe may cause most of problems of pressure reducing valve. Be careful sufficiently to foreign matter in a pipe.

- Phenomenon alike valve trouble may happen by fault of pressure gauge, fluid leakage from by-pass valve, forgetting to close the by-pass valve, clogging strainer, and etc. First, check the said particulars before above troubleshooting.
- Consult factory when cannot make a judgement whether parts need replacement or not.

8.2 Precautions during maintenance and inspection

<u> Marning</u>

(1)Completely discharge internal pressure from the valves, lines, and equipment, and cool the valve down to a level where you can touch it with bare hands before disassembly and inspection.

%Failure to do so may result in injury or burns due to residual pressure or spillage around the valve.

<u>∧</u>Caution

(1)In order to maintain original performance and function, examine daily and personal inspection. And, periodical inspection must be examined according to the regulations of every kind.

*For general users, request to specialized dealer or manufacture.

(2)Pressure reducing valve shall be disassembled and inspected by qualified person or manufacture.

*Request the treatment to specialized dealer or manufacture in case of any problems.

(3)While disassembly, drain flow out from the valve, so catch it by container. And release steam completely before disassembling.

XIn case of no container for drain, it makes dirty surrounding the valve.

(4)Close the stop valves before and after the pressure reducing valve, and remove all foreign matter and scales via the by-pass line before operation.

*Failure to do so may prevent the valve from functioning correctly.

(5)When adjusting pressure, slowly turn the adjusting screw.

※Incorrect adjustment may cause hunting, water hammer, etc., resulting in damage to the valve and other equipment.

- (6)Remove condensate completely from the line, and close the stop valves before and after the valve when not using it for long periods of times.
- %Rust generated in the valves and lines may cause malfunction.
- (7)In case of no operation for a long period of time, perform operating exam before start operation again.

%Request the treatment to specialized dealer or manufacture in case of any problems.

8.3 Disassembly

Be sure that the stop valves at inlet and outlet side of pressure reducing valve is closed and all internal pressure and condensate have discharged before disassembling the valve.

(1) Pilot valve

- 1. Loosen the lock nut [10] and turn the adjusting screw [9] to release the spring [8] (no compression). For the model with handle, turn the handle in counterclockwise while pushing down in order to change the adjusting spring into free position.
- 2. Remove the bolt [33] of the spring chamber [4]. Remove the spring chamber, spring, top spring plate [6], bottom spring plate [7], and diaphragm [5]. For the model with handle, remove the handle and spring chamber by one since they cannot disassemble.
- 3. Remove the pilot valve assembly [19], [20] using a ring spanner or socket wrench (nominal size 22)

(2) Piston

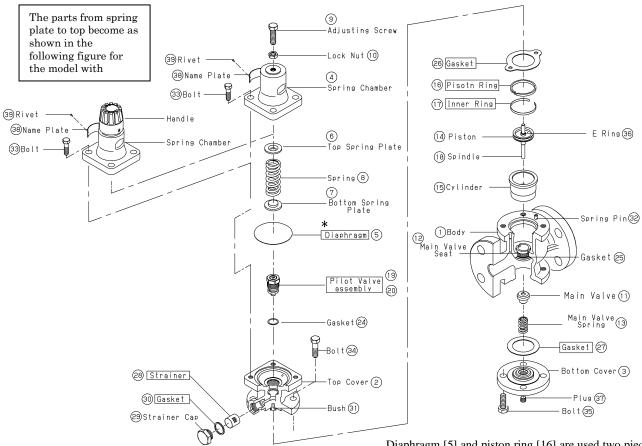
1. Remove the bolt [34] of the top cover [2] and the top cover. Pick up the spindle [18], and remove the piston ring [16] and the inner ring [17].

(3) Main valve

1. Remove the bolt [35] of the bottom cover [3]. Remove the bottom cover, main valve spring

[13], and main valve [11].

8.4 Precautions during disassembly


▲ Caution

- (1) Check that there is no damage and scratches on the main valve, main valve seat, pilot valve, and pilot valve seat.
 - *Any scratches at sealing surface lead to increase in secondary pressure. When any scratches are identified at main valve and seat, polish them away. And, change the parts if scratches still exist after polishing. Also, in case any scratches are identified at pilot valve and pilot valve seat, change into pilot valve assembly.
- (2) Move the sliding section (pilot valve, piston, etc.) two to three times and confirm they move smoothly.

%If the sliding parts do not move correctly, it may cause failure problems. (Working not correctly).

- (3) Replace gaskets with new ones when reassembling.
- XIf the gasket is used for a long time, it may cause steam leakage problem.
- (4) Assemble in the reverse order of Disassembly. And tighten the bolts evenly.
 - *Assemble the valve due to the order. Failure to do so may lead to not assemble correctly. And if the hexagon bolts are not screwed correctly, it may cause steam leakage problem.

8.5 Exploded drawing

Diaphragm [5] and piston ring [16] are used two pieces for GP-1002 and GP-1012.

Parts with in the flame are consumable. Please contact us for	purchase of these consumable parts.
---	-------------------------------------

No.	Name of parts	Replace period
5	Diaphragm	2 years
16	Piston ring	3 years
17	Inner ring	3 years
19•20	Pilot valve assembly	5 years
24	Gasket	5 years
26•27	Gasket	2 years
28	Strainer	5 years
30	Gasket	2 years

Note (*): Apply a liquid sealant for heat and steam resistant (Recommendation: SOLVEST 110) to the sealing surface of the diaphragm bottom and the top cover.

Warranty Information

1. Limited warranty

This product has been manufactured using highly-advanced techniques and subjected to strict quality control. Please be sure to use the product in accordance with instructions on the manual and the label attached to it.

Yoshitake warrants the product to be free from any defects in material and workmanship under normal usage for a period of one year from the date of receipt by the original user, but no longer than 24 months from the date of shipment from Yoshitake's factory.

2. Parts supply after product discontinuation

This product may be subject to discontinuation or change for improvement without any prior notice. After the discontinuation of the product, Yoshitake supplies the repair parts for 5 years otherwise individually agreed.

- 3. This warranty does not cover the damage due to any of below:
 - (1) Valve seat leakage or malfunction caused by foreign substances inside piping.
 - (2) Improper handling or misuse.
 - (3) Improper supply conditions such as abnormal water pressure/quality.
 - (4) Water scale or freezing.
 - (5) Trouble with power/air supply.
 - (6) Any alteration made by other than Yoshitake.
 - (7) Use under severe conditions deviating from the design specifications(e.g. in case of corrosion due to outdoor use).
 - (8) Fire, flood, earthquake, thunder and other natural disasters.
 - (9) Consumable parts such as O-ring, gasket, diaphragm and etc.

Yoshitake is not liable for any damage or loss caused by malfunction or defect of the product.

YDSHITAK